BMath-III, DG2 Mid-semestral exam

Instructions: Total time 3 Hours. Solve as many problems as you like, for

a max score of 30. $\,$

1. Let M be a parameterized hypersurface in \mathbb{R}^n , N its unit normal field and let X, Y be tangential vector fields on M. Prove that

$$\langle \partial_{X(p)}, N(p) \rangle = \langle \partial_{Y(p)}, N(p) \rangle$$
, for all $p \in M$.

Here, for a smooth vector field Z on M, $\partial_v Z$ denotes the directional derivative of Z in the direction of $v \in T_p(M)$. (8)

- 2. Give an example of a parameterized hypersurface M in \mathbb{R}^n , $n \geq 3$ and a tangential vector field X on M such that for some $p \in M$ and $v \in T_pM$, $\partial_v X$ is not tangential. (4)
- 3. Let $\alpha : [0, \pi] \longrightarrow S^2$ be the half great circle in S^2 that joins the north pole P = (0, 0, 1) and the south pole Q = (0, 0, -1), defined by $\alpha(t) = (\sin t, 0, \cos t)$. Show that for

$$v = (P, (v_1, v_2, 0)) \in T_P S^2, \ P_\alpha(v) = (Q, (-v_1, v_2, 0)).$$

(8)

- 4. Prove that in a parameterized hyperplane in \mathbb{R}^n , geodesics are straight lines. (4)
- 5. Let Π in \mathbb{R}^n be a parameterized hyperplane, $p, q \in \Pi$, and $\alpha : [0, 1] \longrightarrow \mathbb{R}^n$ a smooth curve in Π such that $\alpha(0) = p$ and $\alpha(1) = q$. Let $(p, v) \in T_p(\Pi)$. Determine $P_{\alpha}(v)$ and prove that parallel transport in Π is independent of choice of α . (8)
- 6. Let M be a parameterized hypersurface in \mathbb{R}^n and N be its unit normal. For X, Y tangential vector fields on M, define $[X, Y](p) := \partial_{X(p)}Y - \partial_{Y(p)}X$ and $(D_XY)(p) = D_{X(p)}Y := \partial_{X(p)}Y - \langle \partial_{X(p)}Y, N(p) \rangle N(p)$ for $p \in M$. Prove that $D_XY - D_YX = [X, Y]$. (8)
- 7. Compute the Weingarten matrix for a parameterized hyperplane in \mathbb{R}^n . (6)
- 8. Let X be the constant vector field on \mathbb{R}^3 with X(p) = (a, b, c) for all $p \in \mathbb{R}^3$ and let Y be the vector field given by $Y((x, y, z)) = (xy^2 + 4z, y^2 x, x + z^3)$. Compute the derivative $\partial_X Y$. Recall that for any point $p, (\partial_X Y)(p) := \partial_{X(p)} Y$. Here we identify the standard basis of \mathbb{R}^3 with the basis of the tangent space at any point. (6)
- 9. Let S be the cylinder in \mathbb{R}^3 given by $\sigma(u, v) = (\cos u, \sin u, v)$. Compute the fundamental forms as well as the Gaussian curvature of S. (8)
- 10. Prove that for the atlas for $\mathbb{R}P^n$ defined in the class, the transition maps are indeed smooth. (6)