BMath-III, DG2 Mid-semestral exam

Instructions: Total time 3 Hours. Solve as many problems as you like, for a max score of 30 .

1. Let M be a parameterized hypersurface in \mathbb{R}^{n}, N its unit normal field and let X, Y be tangential vector fields on M. Prove that

$$
\left\langle\partial_{X(p)}, N(p)\right\rangle=\left\langle\partial_{Y(p)}, N(p)\right\rangle, \text { for all } p \in M
$$

Here, for a smooth vector field Z on $M, \partial_{v} Z$ denotes the directional derivative of Z in the direction of $v \in T_{p}(M)$.
2. Give an example of a parameterized hypersurface M in $\mathbb{R}^{n}, n \geq 3$ and a tangential vector field X on M such that for some $p \in M$ and $v \in T_{p} M$, $\partial_{v} X$ is not tangential.
3. Let $\alpha:[0, \pi] \longrightarrow S^{2}$ be the half great circle in S^{2} that joins the north pole $P=(0,0,1)$ and the south pole $Q=(0,0,-1)$, defined by $\alpha(t)=$ $(\sin t, 0, \cos t)$. Show that for

$$
\begin{equation*}
v=\left(P,\left(v_{1}, v_{2}, 0\right)\right) \in T_{P} S^{2}, P_{\alpha}(v)=\left(Q,\left(-v_{1}, v_{2}, 0\right)\right) . \tag{8}
\end{equation*}
$$

4. Prove that in a parameterized hyperplane in \mathbb{R}^{n}, geodesics are straight lines.
5. Let Π in \mathbb{R}^{n} be a parameterized hyperplane, $p, q \in \Pi$, and $\alpha:[0,1] \longrightarrow \mathbb{R}^{n}$ a smooth curve in Π such that $\alpha(0)=p$ and $\alpha(1)=q$. Let $(p, v) \in T_{p}(\Pi)$. Determine $P_{\alpha}(v)$ and prove that parallel transport in Π is independent of choice of α.
6. Let M be a parameterized hypersurface in \mathbb{R}^{n} and N be its unit normal. For X, Y tangential vector fields on M, define $[X, Y](p):=\partial_{X(p)} Y-$ $\partial_{Y(p)} X$ and $\left(D_{X} Y\right)(p)=D_{X(p)} Y:=\partial_{X(p)} Y-\left\langle\partial_{X(p)} Y, N(p)\right\rangle N(p)$ for $p \in M$. Prove that $D_{X} Y-D_{Y} X=[X, Y]$.
7. Compute the Weingarten matrix for a parameterized hyperplane in \mathbb{R}^{n}. (6)
8. Let X be the constant vector field on \mathbb{R}^{3} with $X(p)=(a, b, c)$ for all $p \in \mathbb{R}^{3}$ and let Y be the vector field given by $\left.Y((x, y, z))\right)=\left(x y^{2}+\right.$ $\left.4 z, y^{2}-x, x+z^{3}\right)$. Compute the derivative $\partial_{X} Y$. Recall that for any point $p,\left(\partial_{X} Y\right)(p):=\partial_{X(p)} Y$. Here we identify the standard basis of \mathbb{R}^{3} with the basis of the tangent space at any point.
9. Let S be the cylinder in \mathbb{R}^{3} given by $\sigma(u, v)=(\cos u, \sin u, v)$. Compute the fundamental forms as well as the Gaussian curvature of S.
10. Prove that for the atlas for $\mathbb{R} P^{n}$ defined in the class, the transition maps are indeed smooth.
